Jumat, 09 Maret 2012

Kamis, 08 Maret 2012

LAPORAN AGROBIOLOGI


LAPORAN
PRAKTIKUM FISIOLOGI TUMBUHAN
FOTOSINTETIS

LABORATORIUM FISIOLOGI TUMBUHAN
JURUSAN AGROTEKNOLOGI
FAKULTAS PERTANIAN
UNIVERSITAS JEMBER
TAHUN 2010
I. PENDAHULUAN
1.1 Latar Belakang
Fotosintesis adalah suatu proses yang hanya terjadi pada tumbuhan yang berklorofil dan bakteri fotosintetik, dimana energi matahari (dalam bentuk foton) ditangkap dan diubah menjadi energi kimia (ATP dan NADPH). Energi kimia ini akan digunakan untuk fotosintesa karbohidrat dari air dan karbon dioksida. Jadi, seluruh molekul organik lainnya dari tanaman disintesa dari energi dan adanya organisme hidup lainnya tergantung pada kemampuan tumbuhan atau bakteri fotosintetik untuk berfotosintesis. (Devlin, 1975).
Klorofil adalah pigmen hijau fotosintetis yang terdapat dalam tanaman, Algae dan Cynobacteria. nama "chlorophyll" berasal dari bahasa Yunani kuno : choloros = green (hijau), and phyllon= leaf (daun). Fungsi krolofil pada tanaman adalah menyerap energi dari sinar matahari untuk digunakan dalam proses fotosintetis yaitu suatu proses biokimia dimana tanaman mensintesis karbohidrat (gula menjadi pati), dari gas karbon dioksida dan air dengan bantuan sinar matahari. (Subandi, 2008).
Klorofil merupakan pigmen hijau tumbuhan dan merupakan pigmen yang paling penting dalam proses fotosintesis. Sekarang ini, klorofil dapat dibedakan dalam 9 tipe : klorofil a, b, c, d, dan e. Bakteri klorofil a dan b, klorofil chlorobium 650 dan 660. klorofil a biasanya untuk sinar hijau biru. Sementara klorofil b untuk sinar kuning dan hijau. Klorofil lain (c, d, e) ditemukan hanya pada alga dan dikombinasikan dengan klorofil a. bakteri klorofil a dan b dan klorofil chlorobium ditemukan pada bakteri fotosintesin. (Devlin, 1975).
Klorofil pada tumbuhan ada dua macam, yaitu klorofil a dan klorofil b. perbedaan kecil antara struktur kedua klorofil pada sel keduanya terikat pada protein. Sedangkan perbedaan utama antar klorofil dan heme ialah karena adanya atom magnesium (sebagai pengganti besi) di tengah cincin profirin, serta samping hidrokarbon yang panjang, yaitu rantai fitol. (Santoso, 2004).
Kloroplas berasal dari proplastid kecil (plastid yang belum dewasa, kecil dan hampir tak berwarna, dengan sedikit atau tanpa membran dalam). Pada umumnya
proplastid berasal hanya dari sel telur yang tak terbuahi, sperma tak berperan disini. Proplastid membelah pada saat embrio berkembang, dan berkembang menjadi kloroplas ketika daun dan batang terbentuk. Kloroplas muda juga aktif membelah, khususnya bila organ mengandung kloroplas terpajan pada cahaya. Jadi, tiap sel daun dewasa sering mengandung beberapa ratus kloroplas. Sebagian besar kloroplas mudah dilihat dengan mikroskop cahaya, tapi struktur rincinya hanya bias dilihat dengan mikroskop elektron. (Salisbury dan Ross, 1995).
Struktur klorofil berbeda-beda dari struktur karotenoid, masing-masing terdapat penataan selang-seling ikatan kovalen tunggal dan ganda. Pada klorofil, sistem ikatan yang berseling mengitari cincin porfirin, sedangkan pada karotoid terdapat sepasang rantai hidrokarbon yang menghubungkan struktur cincin terminal. Sifat inilah yang memungkinkan molekul-molekul menyerap cahaya tampak demikian kuatnya, yakni bertindak sebagai pigmen. Sifat ini pulalah yang memungkinkan molekul-molekul menyerap energi cahaya yang dapat digunakan untuk melakukan fotosintesis. (Santoso, 2004).
Klorofil akan memperlihatkan fluoresensi, berwarna merah yang berarti warna larutan tersebut tidak hijau pada cahaya yang diluruskan dan akan merah tua pada cahaya yang dipantulkan. (Noggle dan Fritz, 1979).
Spektrofotometri sesuai dengan namanya adalah alat yang terdiri dari spektrofotometer dan fotometer akan menghasilkan sinar dari spektrum dengan panjang gelombang energi secara relatif. Jika energi tersebut ditransmisikan maka akan ditangkap oleh klorofil yang terlarut tersebut. Pada fotometer filter sinar dari panjang gelombang yang diinginkan akan diperoleh dengan berbagai filter yang punya spesifikasi melewati banyaknya panjang gelombang tertentu. (Noggle dan Fritz, 1979).
Sel penutup memiliki klorofil di dalam selnya sehingga dengan bantuan cahaya matahari akan sangat berpengaruh buruk pada klorofil. Larutan klorofil yang dihadapkan pada sinar kuat akan tampak berkurang hijaunya. Daun-daun yang terkena langsung umumnya akan tampak kekuning-kuningan, salah satu cara untuk dapat menentukan kadar klorofil adalah dengan metoda spektofotometri (Dwijiseputro, 1981).
Cahaya hijau, kuning, jingga dan merah dipantulkan oleh kedua pigmen ini. Kombinasi panjang gelombang yang dipantulkan oleh kedua pigmen karotenoid ini tampak berwarna kuning. Ada bukti yang menunjukkan bahwa beta-karoten lebih efektif dalam mentransfer energi ke kedua pusat reaksi dibanding lutein atau pigmen xanthofil yang disebut fucoxanthofil adalah sangat efektif dalam mentrensfer energi. Di samping berperan sebagai penyerap cahaya, karotenoid pada tilakoid juga berperan untuk melindungi klorofil dari kerusakan oksidatif oleh O2, jika intensitas cahaya sangat tinggi. (Lakitan, 2007).
Sejak tipe-tipe atom atau molekul yang sedikit berbeda pada tingkat energinya, yang substansi menyerap cahaya dengan suatu karakteristik panjang gelombang yang berbeda. Ini biasanya ditunjukkan selama penyerapan sinar pada tiap gelombangnya. Sebagai contoh, klorofil a sangat kuat pada panjang gelombang 660 nm pada sinar merah dan paling rendah pada panjang gelombang 430 nm pada sinar biru. Ketika gelombang itu berpindah maka sinar yang ada di sebelah kiri adalah sinar hijau yang bisa kita lihat. (Guiltmond and Hopkins, 1983).
1.2. Tujuan Praktikum
Tujuan dari praktikum ini adalah untuk melihat pengaruh perbedaan warna terhadap aktivitas fotosintesis, mengetahui pengaruh cahaya terhadap kecepatan fotosintesis mengetahui pengaruh cahaya terhadap kecepatan fotosintesis dengan mengukur oksigen yang dihasilkan, mengukur titik kompensasi CO2 pada tumbuhan C3 dan C4, dan membandingkan efektifitas tumbuhan C3 dan C4.
3.4 Pengamatan
3.4.1 Pengaruh perbedaan panjang gelombang pada fotosintesis
Pada percobaan ini, setelah beberapa waktu Hydrilla diletakkan di bawah lampu terbentuk ruang udara pada Hydrilla yang diperlakukan sebagai kontrol. Baru kemudian setelah itu terbentuk juga ruang udara pada perlakuan lain, kecuali pada
Hydrilla yang ditutup dengan kertas berwarna biru. Ruang udara yang paling besar yaitu pada Hydrilla kontrol.
3.4.2 Kecepatan fotosintesis pada cahaya yang berbeda
Pada percobaan ini ruang udara yang terbentuk hanyalah pada Hydrilla yang ditempatkan pada cahaya matahari langsung. Sedangkan Hydrilla yang ditempatkan di ruang gelap dan di dalam ruangan tidak terjadi perubahan apa-apa dan tidak terbentuknya ruang udara.
3.4.3 pendugaan titik kompensasi CO2 pada tumbuhan C3 dan C4
Setelah lebih kurang satu jam ditempatkan di bawah penerangan lampu neon, baik tanaman C3 maupun C4 sudah melakukan fotosintesis karena pada erlenmeyer dapat dilihat adanya uap air di sekeliling dindingnya.
II. TINJAUAN PUSTAKA
Pada proses fotosintesa, terjadi penangkapan energi cahaya oleh zat hijau daun untuk pembentukan bahan organik. Fotosintesa hanya terjadi pada tanaman yang memiliki sel-sel hijau termasuk pada beberapa jenis bakteri. (Darmawan dan Baharsyah, 1983).
Aksi dari cahaya hijau dan kuning yang menyebabkan fotosistem pada tumbuhan tingkat tinggi dan penyerapan panjang gelombang ini oleh daun sebenarnya relatif tinggi, lebih tinggi dari yang ditampakkan pada spektrum serapan klorofil dan karotenoid. Tetapi, bukan berarti bahwaada pigmen lain yang berperan menyerap cahaya tersebut. Alasan utama mengapa spektrum aksi lebih tinggi dari spektrum serapan adalah karena cahaya hijau dan kuning yang tidak segera diserap akan dipantulkan berulang-ulang di dalam sel fotosintetik sampai akhirnya diserap oleh klorofil dan menyumbangkan energi untuk fotosintesis. (Lakitan, 2007).
Laju fotosintesis berbagai spesies tumbuhan yang tumbuh pada berbagai daerah yang berbeda seperti gurun kering, puncak gunung, dan hutan hujan tropika, sangat berbeda. Perbedaan ini sebagian disebabkan oleh adanya keragaman cahaya, suhu, dan ketersediaan air, tapi tiap spesies menunjukkan perbedaan yang besar pada kondisi khusus yang optimum bagi mereka. Spesies yang tumbuh pada lingkungan yang kaya sumberdaya mempunyai kapasitas fotosintesis yang jauh lebih tinggi daripada spesies yang tumbuh pada lingkungan dengan persediaan air, hara, dan cahaya yang terbatas. (Salisbury dan Ross, 1995).
Laju fotosintesis ditingkatkan tidak hanya oleh naiknya tingkat radiasi, tapi juga oleh konsentrasi CO2 yang lebih tinggi, khususnya bila stomata tertutup sebagian karena kekeringan. (Salisbury dan Ross, 1995).
Semua klorofil atau karotenoid terbenam atau melekat pada molekul protein oleh ikatan nonkovalen. Secara keseluruhan, pigmen-pigmen kloroplas meliputi separuh dari kandungan kandungan lipida total pada membran tilakoid, sisanya adalah galaktolipida dan sedikit fosfolipida. Sterol sangat jarang dijumpai pada membran tilakoid. (Lakitan, 1993).
Di dalam kloroplas ditemukan DNA, RNA, ribosom, dan berbagai enzim. Semua molekul ini sebagian besar terdapat di stroma, tempat berlangsungnya transkripsi dan translasi. DNA kloroplas (genom) terdapat dalam 50 atau lebih lingkaran jalur ganda melilit dalam tiap plastid. Berbagai gen plastid menyandi semua molekul RNA-pemindahan (sekitar 30), dan molekul RNA-ribosom (empat) yang digunakan oleh plastid untuk translasi. Kira-kira 85 gen seperti ini menyandi protein yang terlibat dalam transkripsi, translasi, dan fotosintesis. Tapi, sebagian besar protein disandi oleh gen nukleus. (Salisbury dan Ross, 1995).
Warna daun berasal dari klorofil, pigmen warna hijau yang terdapat di dalam kloroplas. Energi cahaya yang diserap klorofil inilah yang menggerakkan sitesis molekul makanan dalam kloroplas. Kloroplas ditemukan terutama dalam sel mesofil, yaitu jaringan yang terdapat di bagian dalam daun. Karbon dioksida masuk ke dalam daun, dan oksigen keluar, melalui pori mikroskopik yang di sebut stomata. (Campbell, dkk, 2002). Fotosintesis hanya berlangsung pada sel yang memiliki pigmen fotosintetik. Di dalam daun terdapat jaringan pagar dan jaringan bunga karang, pada keduanya mengandung kloroplast yang mengandung klorofil/pigmen hijau yang merupakan salah satu pigmen fotosintetik yang mampu menyerap energi cahaya matahari. (Subandi, 2008).
Cahaya putih mengandung semua warna spektrum kasat mata dari merah-violet, tetapi seluruh panjang gelombang unsurnya tidak diserap dengan baik secara merata oleh klorofil. Adalah mungkin untuk menentukan bagaimana efektifnya setiap panjang gelombang (warna) diserap dengan menggunakan suatu larutan klorofil dengan cahaya monokromatik (cahaya berwarna satu). (Kimball, 2000).
Penambatan CO2 paling banyak terjadi sekitar tengah hari ketika tingkat cahaya paling tinggi. Cahaya sering membatasi fotosintesis terlihat juga dengan menurunnya laju penambatan CO2 ketika tumbuhan terkena bayangan awan sebentar. (Salisbury dan Ross, 1995).
Dilihat dari strukturnya, kloroplas terdiri atas membran ganda yang melingkupi ruangan yang berisi cairan yang disebut stroma. Membran tersebut membentak suatu sistem membran tilakoid yang berwujud sebagai suatu bangunan yang disebut kantung tilakoid. Kantung-kantung tilakoid tersebut dapat berlapis-lapis
dan membentak apa yang disebut grana Klorofil terdapat pada membran tilakoid dan pengubahan energi cahaya menjadi energi kimia berlangsung dalam tilakoid, sedang pembentukan glukosa sebagai produk akhir fotosintetis berlangsung di stroma. (Subandi, 2008).
Faktor-faktor yang berpengaruh terhadap pembentukan klorofil antara lain gen, bila gen untuk klorofil tidak ada maka tanaman tidak akan memiliki klorofil. Cahaya, beberapa tanaman dalam pembentukan klorofil memerlukan cahaya, tanaman lain tidak memerlukan cahaya. Unsur N, Mg, Fe merupakan unsur-unsur pembentuk dan katalis dalam sintesis klorofil. Air, bila kekurangan air akan terjadi desintegrasi klorofil. (Subandi, 2008).
Antara klorofil a dan klorofil b mempunyai struktur dan fungsi yang berbeda, dimana klorofil a di samping bias menyerap energi cahaya, klorofil ini juga bias merubah energi cahaya dan tidak bisa merubahnya menjadi energi kimia dan energi itu akan ditransfer dari klorofil b ke klorofil a. Klorofil b ini tidak larut dalam etanol tai dapat larut dalam ester, dan kedua jenis klorofil ini larut dalam senyawa aseton (Devlin, 1975).
Semua tanaman hijau mengandung klorofil a dan krolofil b. Krolofil a terdapat sekitar 75 % dari total klorofil. Kandungan klorofil pada tanaman adalah sekitar 1% basis kering. Dalam daun klorofil banyak terdapat bersama-sama dengan protein dan lemak yang bergabung satu dengan yang lain. Dengan lipid, klorofil berikatan melalui gugus fitol-nya sedangkan dengan protein melalui gugus hidrofobik dari cincin porifin-nya. Rumus empiris klorofil adalah C55H72O5N4Mg (klorofil a) dan C55H70O6N4Mg (klorofil b). (Subandi, 2008).
III. PELAKSANAAN PRAKTIKUM
3.1 Waktu dan Tempat
Praktikum fotosintesis ini dilaksanakan pada hari Senin tanggal 29 Mei 2009 di laboratorium fisiologi tumbuhan Universitas Andalas.
3.2 Alat dan Bahan
Alat yang digunakan pada percobaan ini adalah tabung reaksi, gelas piala, spidol, pipet tetes, gelas ukur, kertas transparan warna biru, kuning, merah, corong, erlenmeyer 125 mL, ampul, kertas merang, aluminium foil, karet gelang, kain kassa, gunting, benang, sumber cahaya dengan intensitas > 1000 fitC, dan pH meter. Sedangkan bahan yang digunakan adalah Hydrilla sp., Imperata, bibit tanaman Oryza sativa berumur 2 minggu, NaHCO3 0,5 %, NaHCO3 1 x 10-5 M, dan air destilat.
3.3 Cara kerja
3.3.1 Pengaruh perbedaan panjang gelombang pada fotosintesis
Hydrilla sp. dimasukkan ke dalam tabung reaksi sebanyak 4 tangkai (satu tangkai setiap tabung) dengan tangkai ke arah bawah tabung. Diisi tabung dengan NaHCO3 0,5 % sampai penuh, lalu diletakkan terbalik di dalam gelas piala, diusahakan tidak terbentuk ruang udara. Gelas piala dibungkus dengan kertas berwarna dan diletakkan di bawah lampu neon selama 2 jam. Setelah 2 jam, dinding tabung dipukul-pukul agar gelembung terlepas dari tanaman, lalu ditandai ruang udara yang terbentuk dengan spidol. Dikeluarkan isi tabung, dikeringkan, dan diisi dengan air dengan pipet sampai batas yang telah ditandai. Volume air ini sama dengan volume oksigen yang terbentuk selama fotosintesis. Terakhir dibandingkan pengaruh warna terhadap reaksi ini.
3.3.2 Kecepatan fotosintesis pada cahaya yang berbeda
Hydrilla sp. dimasukkan ke dalam tabung reaksi sebanyak 3 tangkai (satu tangkai setiap tabung) dengan tangkai ke arah bawah tabung. Diisi tabung dengan NaHCO3 0,5 % sampai penuh, lalu diletakkan terbalik di dalam gelas piala, diusahakan tidak terbentuk ruang udara. Diletakkan pada tiga tempat yang berbeda selama 2 jam, yaitu pada cahaya matahari langsung, di dalam ruangan, dan di tempat terbuka.. Setelah 2 jam, dinding tabung dipukul-pukul agar gelembung terlepas dari tanaman, lalu ditandai ruang udara yang terbentuk dengan spidol.
3.3.3 Pendugaan titik kompensasi CO2 pada tumbuhan C3 dan C4
Dimasukkan 10 mL NaHCO3 1 x 10-5 M ke dalam erlenmeyer, diukur pHnya lalu ditutup rapat dengan kain kassa. Dimasukkan air destilat ke dalam ampul lebih kurang tiga perempatnya. Dipotong masing-masing 2 lembar daun Imperata dan Oryza sativa, dimasukkan ke dalam ampul, diikat leher ampul dengan benang. Dimasukkan ampul yang berisi daun ke dalam erlenmeyer sampai 2,5 cm di atas permukaan larutan NaHCO3. digantung ampul pada erlenmeyer dan ditutup rapat. Ditempatkan erlenmeyer di bawah cahaya > 100 fitC, dibiarkan selama 2,5 jam. Setelah itu dikeluarkan ampul, diukur pH dan temperatur larutan NaHCO3. Ditentukan konsentrasi CO2 dengan menggunakan keseimbangan ppm CO2 dengan pH larutan NaHCO3.
3.4 Pengamatan
3.4.1 Pengaruh perbedaan panjang gelombang pada fotosintesis
Pada percobaan ini, setelah beberapa waktu Hydrilla diletakkan di bawah lampu terbentuk ruang udara pada Hydrilla yang diperlakukan sebagai kontrol. Baru kemudian setelah itu terbentuk juga ruang udara pada perlakuan lain, kecuali pada
Hydrilla yang ditutup dengan kertas berwarna biru. Ruang udara yang paling besar yaitu pada Hydrilla kontrol.
3.4.2 Kecepatan fotosintesis pada cahaya yang berbeda
Pada percobaan ini ruang udara yang terbentuk hanyalah pada Hydrilla yang ditempatkan pada cahaya matahari langsung. Sedangkan Hydrilla yang ditempatkan di ruang gelap dan di dalam ruangan tidak terjadi perubahan apa-apa dan tidak terbentuknya ruang udara.
3.4.3 pendugaan titik kompensasi CO2 pada tumbuhan C3 dan C4
Setelah lebih kurang satu jam ditempatkan di bawah penerangan lampu neon, baik tanaman C3 maupun C4 sudah melakukan fotosintesis karena pada erlenmeyer dapat dilihat adanya uap air di sekeliling dindingnya.
IV. HASIL DAN PEMBAHASAN
4.1 Hasil
Dari praktikum yang telag dilaksanakan maka didapatkan hasil sebagai berikut :
4.1.1 Pengaruh Perbedaan Panjang Gelombang Pada Fotosintesis
Pada praktikum ini didapatkan volume oksigen yang dihasilkan dengan memberikan panjang gelombang yang berbeda, dapat dilihat pada tabel berikut :
NO Perlakuan Volume O2
1. Kontrol 0,1 ml
2. Kertas merah 0,05 ml
3. Kertas biru 0,05 ml
4. Kertas kuning 0,15ml

4.1.2 Kecepatan Fotosintesis Pada Cahaya Yang Berbeda
Pada praktikum ini didapatkan volume oksigen yang dihasilkan dengan memberikan kecepatan cahaya yang berbeda, dapat dilihat pada tabel berikut :
NO Perlakuan Volume O2
1. Di tempat cahaya 0,1 ml
2. Di ruangan - ml

3. Di tempat gelap 0,25 ml

4.1.3 Pendugaan Titik Kompensasi CO2 Pada Tumbuhan C3 dan C4
pH awal = 9,49
pH akhir :
Padi :
Kelompok I : 9,53
Kelompok II : 9,52
KelompokIII:9,33
Kelompok IV : 9,55
Kelompok V : 9,40
Kelompok VI : 9,41
Jagung :
Kelompok VII : 9,54
Kelompok VIII : 9,51
Kelompok IX : 9,55
Kelompok X : 9,62
Kelompok XI : 9,55


4.2 Pembahasan
4.2.1 Pengaruh Perbedaan Panjang Gelombang Pada Fotosintesis
Dilihat pada tabel diatas maka dapat dilihat perbedaan dari volume yang dihasilkan dari setiap perlakuan berbeda yang diberikan. Diamana didapatkan volume yang paling tinggi pada kertas transparasn kuning yaitu 0,15 ml, sedangkan yang paling rendah yaitu pada kertas transparan merah yaitu 0,05 ml.
Dari semua radiasi matahari yang dipancarkan, hanya panjang gelombang tertentu yang dimanfaatkan tumbuhan untuk proses fotosintesis, yaitu panjang gelombang yang berada pada kisaran cahaya tampak (380-700 nm). Cahaya tampak terbagi atas cahaya merah (610 - 700 nm), hijau kuning (510 - 600 nm), biru (410 - 500 nm) dan violet (< 400 nm). Masing-masing jenis cahaya berbeda pengaruhnya terhadap fotosintesis. Hal ini terkait pada sifat pigmen penangkap cahaya yang bekerja dalam fotosintesis. Pigmen yang terdapat pada membran grana menyerap cahaya yang memiliki panjang gelombang tertentu. Pigmen yang berbeda menyerap cahaya pada panjang gelombang yang berbeda (Anonimous ,2007).
Pada proses fotosintesis jika semakin banyak CO2 yang dihasilkan maka akan semakin besar fotosintesisnya, dimana dilihat dari percobaan yang memakai kertas transparan, dimana yang paling banyak menyerap sinar biru dan merah adalah kertas transparan warna kuning dan control karena tumbuhan akan memntulkan warna kuning dan menyerap warna selain kuning yaitu biru dan merah yang sangat berguna untuk fotosintesis.
Kloroplast mengandung beberapa pigmen. Sebagai contoh, klorofil a terutama menyerap cahaya biru-violet dan merah. Klorofil b menyerap cahaya biru dan oranye dan memantulkan cahaya kuning-hijau. Klorofil a berperan langsung dalam reaksi terang, sedangkan klorofil b tidak secara langsung berperan dalam reaksi terang. Dalam praktikum ini, anda akan mempelajari peranan jenis cahaya tersebut terhadap fotosintesis, dengan cara mengamati terbentuknya pati pada daun tanaman yang telah disinari dengan jenis cahaya yang berbeda-beda. Daun tanaman yang dapat melakukan proses fotosintesis akan membentuk pati yang dapat dideteksi dengan menggunakan larutan Kalium Iodida (KI) (Franklin,1991).

4.2.2 Kecepatan Fotosintesis Pada Cahaya Yang Berbeda

Pada percobaan ini dapat dilihat dari tabel bahwa O2 yang paling banyak dihasilkan yaitu pada percobaan yang diletakkan pada tempat cahaya matahari langsung. Dapat diperhatikan jika hasil O2 sudah banyak, maka proses fotosintesis berlangsung dengan cepat di tempat terkena cahaya, dibandingkan di dalam ruangan bahkan di tempat gelap tidak terjadi fotosintesis.
Cahaya matahari ditangkap daun sebagai foton. Tidak semua radiasi matahari mampu diserap tanaman, cahaya tampak, dg panjang gelombang 400 s/d 700 nm. Faktor yang mempengaruhi jumlah radiasi yang sampai ke bumi: sudut datang, panjang hari, komposis atmosfer. Cahaya yang diserap daun 1-5% untuk fotosintesis, 75-85% untuk memanaskan daun dan transpirasi. Faktor yang menentukan besarnya radiasi matahari ke bumi: 1)Sudut datang matahari (dari suatu titik tertentu di bumi) 2)Panjang hari 3)Keadaan atmosfer (kandungan debu dan uap air) (Lakitan, 2004)
Yang paling cepat proses fotosintesisnya adalah pada tempat yang terkena cahaya matahari dengan melihat O2 yang dihasilkan yaitu 0,1 ml, sedangkan di ruangan jumlah O2 hanya tidak ada, dan di tempat yang gelap O2 yang dikeluarkan 0,25 ml.
Intensitas cahaya tidak saja dipengaruhi oleh geografis dan musim tetapi juga kondisi cuaca sehari-hari, misal berawan, waktu : pagi, siang, sore dan titik di mana tanaman tumbuh. Pada tanaman hutan, yang tumbuh di bawah (rendah) tidak cukup cahaya untuk keberlanjutan fotosintesis. Intensitas cahaya yang sangat tinggi mungkin saja merusak aparat fotosintesis. Fenomena ini disebut sebagai hambatan cahaya (photoinhibition) terjadi bila tanaman menyerap lebih banyak cahaya daripada kemampuannya untuk menggunakan dalam fotosintesis (Salisbury,1995).
4.2.3 Pendugaan Titik Kompensasi CO2 Pada Tumbuhan C3 dan C4
Pada percobaan ini dapat dilihat dari hasil pH yang didapatkan pada tanaman C3 dan C4, dimana pH larutan NaHCO3 pada tanaman C3 lebih rendah daripada tanaman C4. Dimana pH larutan NaHCO3 pada tanaman C3 adalah 7,46 sedangkan pH larutan NaHCO3 pada tanaman C4 adalah 7,6. Ini berarti CO2 yang digunakan pada
tanaman C4 sedikit. Meskipun dengan CO2 yang sedikit tapi dapat menghasilkan fotosintesis yang lebih besar, sehingga tidak perlu CO2 yang lebih banyak.
C3 memiliki titik kompensasi cahaya rendah, dibatasi oleh tingginya fotorespirasi C4 memiliki titik kompensasi cahaya tinggi, sampai cahaya terik, tidak dibatasi oleh fotorespirasi. Besaran yang menggambarkan banyak sedikitnya radiasi matahari yang mampu diserap tanaman : ildILD kritik dan ILD optimum, ILD kritik menyebabkan pertumbuhan tanaman 90% maksimum. ILD optimum menyebabkan pertumbuhan tanaman (CGR) maksimum. Pada tanaman kelompok C3, naungan tidak hanya diperlukan pada fase bibit saja, tetapi sepanjang siklus hidup tanaman (Fitter, 1991).
Pada keadaan tanpa CO2 maka fotosintesis juga tidak akan berlangsung dan justru CO2 akan dibebaskan lewat proses katabolisme. Naiknya kadar CO2 atmosfer akan meningkatkan intensitas fotosintesis dan pada konsentrasi CO2 tertentu, terjadi keseimbangan antara CO2 yang difiksasi dan CO2 yang dibebaskan. Titik keseimbangan ini disebut sebagai titik kompensasi fotosintesis (analog dengan The Light Compensation Point of Photosynthesis). Pada konsentrasi yang melebihi titik kompensasi CO2, fiksasi CO2 juga lebih besar daripada yang dibebaskan, sehingga terjadi aliran CO2 ke dalam daun. Tanaman C3 dan C4 memiliki titik kompensasi CO dengan nilai yang berbeda, dikatakan tanaman C4 lebih efektif memfiksasi CO2 yang dibebaskan selama proses katabolisme (Anonimous,2005).
Meskipun dengan semakin dewasa umur tanaman, intensitas naungan semakin dikurangi. Naungan selain diperlukan untuk mengurangi intensitas cahaya yang sampai ke tanaman pokok, juga dimanfaatkan sebagai salah satu metode pengendalian gulma. Titik kompensasi gulma rumputan dapat ditentukan sama dengan IC pada batas mulai ada pertumbuhan gulma. Tumbuhan tumbuh ditempat dengan IC lebih tinggi dari titik kompensasi (sebelum tercapai titik jenuh), hasil fotosintesis cukup untuk respirasi dan sisanya untuk pertumbuhan (Lakitan, 2004).

V. KESIMPULAN DAN SARAN
5.1 Kesimpulan
Dari praktikum yang telah dilaksanakan maka dapat ditarik kesimpulan sebagai berikut :
1. Volume oksigen yang paling banyak dihasilkan pada perlakukan kertas transparan kuning yaitu 0,15 ml sedangkan yang pling rendah pada kertas transparan merah yaitu 0,05 ml.
2. Fotosintesis terjadi paling cepat pada tempat yang terkena cahaya matahari, dengan oksigen yang dihasilkan 0,1 ml.
3. Yang memiliki titik kompensasi CO2 rendah adalah tanaman C4 dibandingkan C3, karena C4 mampu menghasilkan fotosintesis yang banyak dengan CO2 yang sedikit.

5.2 Saran Diharapkan kepada praktikan untuk lebih serius dalam menjalani praktikum agar tujuan dari praktikum ini dapat terlaksana dengan baik dan praktikan dapat mengetahui dan memahami prosedur kerja sehingga dapat membuat laporan dengan baik dan benar.
DAFTAR KEPUSTAKAAN
Campbell dan Reece. 2002 Biologi Edisi Kelima Jilid 1. Jakarta : Erlangga.
Darmawan dan Baharsjah. 1983. Pengantar Fisiologi Tumbuhan . Jakarta : PT Gramedia.
Devlin, Robert M. 1975. Plant Physiology Third Edition. New York : D. Van Nostrand.
Dwijoseputro, D. 1995. Fisiologi Tumbuhan Jilid 2. Jakarta : Gramedia.
Dwijoseputro. 1994. Pengantar Fisiologi Tanaman. Jakarta : Gramedia.
Guttman, Burton S. Dan and John, W. Hopkins. 1983. Understanding Biology. New York : Harcourt Brace Jovanovich, Inc.
Kimball, John. W. 2000. Biologi Edisi Kelima Jilid 1. Jakarta : Erlangga.
Lakitan, Benyamin. 1993. Dasar-Dasar Fisiologi Tumbuhan. Jakarta : PT. Grafindo Persada.
Lakitan, Benyamin. 2007. Dasar-Dasar Fisiologi Tumbuhan. Jakarta : PT. Raja Grafindo Persada.
Noggle, Ray, R dan Fritzs, J. George. 1979. Introductor Plant Physiology. New Delhi : Mall of India Private Ilmited.
Salisbury, J.W. dan Ross. 1995. Fisiologi Tumbuhan Jilid 2. Bandung : ITB.
Salisbury, J.W. dan Ross. 1995. Fisiologi Tumbuhan Jilid I. Bandung : ITB.
Santoso. 2004. Fisiologi Tumbuhan. Bengkulu : Universitas Muhammadiyah Bengkulu.
Subandi, Aan. 2008. Metabolisme. http://metabolisme.blogspot.com/2007/09. 06 April 2008.


LAPORAN CANGKOK


BAB 1 PENDAHULUAN
1.1 Latar Belakang
            Dalam kehidupan sehari-hari tanaman melakukan beberapa aktivitas yang berguna dalam rangka mempertahankan hidup, seperti bernapas, berfotosintesis, respirasi, dan berkembang biak. Awal perkembangbiakan umumnya ditandai dengan perkecambahan. Dan tentunya di dalamnya terdapat struktur yang cukup rumit. Perkembangbiakan pada setiap tanaman tidaklah sama. Ada beberapa spesies tanaman yang berkembangbiak dengan cara generatif dan ada juga yang berkembangbiak dengan cara vegetatif.
            Berbagai jenis tanaman sama sama berkembang biak , tapi tanaman berkembang biak dengan cara yang berbeda beda. Perbanyakan tanaman juga memiliki beberapa jenis cara, diantaranya adalah perbanyakan segara genetatif maupun vegetatif.
            Mencangkok adalah suatu cara mengembangbiakkan tumbuhan dengan jalan menguliti batang yang ada lalu bungkus dengan tanah agar akarnya tumbuh. Jika akar sudah muncul akar yang kokoh, maka batang tersebut sudah bisa dipotong dan ditanam di tempat lain, mencangkok juga dapat diartikan suatu perbanyakan vegetatif secara buatan tanpa baikan dengan menggunakan bagian dari tanaman.
            Perkembangbiakan baik secara vegetatif sebagian besar berasal dari salah satu bagian tanaman, misalnyaberasal dari batang, akar, daun, dan lain-lain, atau bisa juga disebut bibit. Sedangkan perkembangbiakan secara generatif umumnya berasal dari biji. Pada kenyataannya kita dapat membedakan antara bibit dan benih yang keduanya digunakan dalam proses pembiakan tanaman.
            Kegiatan perbanyakan tanaman dengan mencangkok merupakan kegiatan yang biasa dilakukan di nursery tanaman buah. Tanaman induk yang akan dicangkok
dipilih karena karakternya yang diinginkan. Tanaman induk diusahakan setelah dicangkok tidak mati sehingga dapat berkembang kembali dan menjadi tanaman induk untuk dicangkok di kemudian hari lainnya.
            Kaitannya terhadap praktikum kegiatan ini yang dilakukan dengan menggunaka indicator tanaman sri rejeki memberikan pambalajaran dan pengetahuan di bidang perbanyakan tanaman.

1.2  Tujuan
1. Untuk mengetahui dan mempelajari cara mencangkok, dan untuk mengetahui pertumbuhan akar   cangkok.
2. Untuk mengetahui pengaruh media cangkokan terhadap pembentukan sistem perakaran

1.3  Manfaat
1. Dapat mengetahui dan mempelajari cara mencangkok, dan untuk mengetahui pertumbuhan akar   cangkok.
2. Dapat mengetahui pengaruh media cangkokan terhadap pembentukan sistem perakaran
BAB 2 TINJAUAN PUSTAKA
            Mencangkok adalah cara memperbanyak tanaman dimana pembentukan akar pada calon tanaman baru terjadi ketika masih melekat pada tanaman induknya. Air dan mineral tetap diangkut melalui xylem ke tunas / cabang yang dicangkok. Dengan demikian, hasil perbanyakan dengan  cara mencangkok lebih tinggi daripada hasil perbanyakan denga stek. Ada 2 macam cara mencangkok yang sering dilakukan pada tanaman tertentu  (Ismiyati Sutarto,1994).
            Merundukkan batang/ cabang ke tanah . Pembentukan akar di rangsang dengan berbagai perlkuan yang dapat menghentikan tranlokasi bahan organic seperti karbohidrat, auxin dan faktor pertumbuhan yang lan dari dan ujung tunas ke bagian bawah tunas yang di cangkok (Ismiyati Sutarto).
            Mencangkok tanaman adalah salah satu cara teknik memperbanyak tanaman buah dalam pot, selain itu kualitas buahnya sama dengan induknya dan juga pohonnya tidak terlalu tinggi. Tanaman yang bisa dicangkok antara lain: jambu, jambu air, mangga, sawo, dan lain-lain (Wilkins, 1991).
            Mencangkok atau okulasi adalah teknik pengembangbiakan tanaman yg sangat cocok utk di tanam di dalam pot. Di samping karena qualitas buahnya terjaga sama spt induknya juga nantinya pohon tumbuh tidak terlalu tinggi. Pohon yg dikembangbiakan dg teknik cangkok tidak akan mempunyai akar tunggang.(Ansown, 1989).
            Beberapa tanaman tertentu memilki kemampua untuk memperanyak diri dengan pencangkokan yang terjadi secara alami, yaitu sulur dan anakan terutama pad tanaman yang berbentuk roset (Wahyuni, Sri, 1998).
            Pembentukan biji melalui proses penyerbukan (jatuhnya tepung sari pada kepala putik) kemudian dilanjutkan dengan pembuahan (peleburan antara gamet jantan dari tepung sari dan gamet betina dari putik). Dalam kontek agronomi, benih sebagai bahan tanaman merupakan biji yang diproduksi, diproses, dan diuji dengan metode standar sehingga memenuhi persyaratan sebgai bahan tanaman
(Kusbiantoro, 1993).
            Cabang pilihan yang akan dicangkok dikelupas kulit cabangnya kirakira 7 cm. Kambium pada cabang dikerik hingga bersih sampai bagian yang dikerik tidak lagi terasa licin tapi kasar. Pengelupasan kulit cabang ini dimaksudkan untuk memutus aliran hara dari batang ke cabang sehingga akar dapat terbentuk pada cabang yang dicangkok. Kemudian pada ujung potongan kulit cabang atas, pasta Rooton F dioleskan. Pengolesan tersebut dimaksudkan untuk mendorong pertumbuhan akar.
(Wahid, 2000).
            Selain tanaman buah-buahan, beberapa tanaman hias juga bisa dicangkok misalnya: bunga sakura, kemuning, soka, musa indah, bougenvil, cemara dan sebagainya. Tanaman yang tersebut di atas adalah tanaman berkayu yang mudah dicangkok. Adapula tanaman berkayu yang sulit di cangkok, namun karena telah ditemukan caranya, akhirnya mampu juga mengeluarkan akarnya setelah dicangkok (Wahid, 2000).
BAB 3 METODOLOGI
3.1 Tempat dan Waktu
            Kugiatan praktikum pembiakan vegetatif dengan cara mencangkok (air layerage)  dilaksanakan di Laboratorium Produksi Tanaman pada tanggal 11 Maret 2011, pukul14.00 WIB.

3.2 Alat dan Bahan
3.2.1        Alat
1.    Tali rafia
2.    sabut kelapa
3.    plastik
4.    pisau tajam(cutter)
5.    timba
3.2.2 Bahan
1. Tanaman sri rejeki
2. pupuk kompos dan pupuk kandang
3.3 Cara Kerja
1.    Menyiapkan bhan dan alat yang diperlukan
2.    Memilih batang atau cabang yang tidak terlalu tua dan tidak terlalu muda.
3.    Menyayat/menghilangkan kulit dan kambium pada batang atau cabang tersebut sepanjang + 10 cm.
4.    Memberi media pada bagian yang luka secukupnya dengan pupuk kandang dan kompos, kemudian ditutup dengan serabut kelapa dan plastik.
5.    Menjaga kelembapan media dengan cara menyiram air.


BAB 4. HASIL DAN PEMBAHASAN

4. 1 Hasil
           
Perlakuan
Ulangan
Parameter pengamatan
∑ Akar
Panjang Akar (cm)
Serabut
Kompos
1
2
3
N
-
9
6
5
-
3
2,6
1,8
Kandang
1
2
3
N
16
11
21
16
10,6
4,43
6,2
7,07
Tanah
1
2
3
N
15
29
25
23
4,5
5,7
5
5,07
Plastik
Kompos
1
2
3
N
-
14
-
4,67
-
4,067
-
1,36
Tanah
1
2
3
N
5
7
32
14,67
4
2
6,83
4,28
Kandang
1
2
3
N
4
-
3
2,33
0,6
-
0,5
0,37


















4. 2 Pembahasan
           
Grafik 4.1 Perlakuan Serabut dengan Jumlah Akar
           
Grafik 4.2 Perlakuan Serabut dengan Panjang Akar (cm)
                       
Grafik 4.3 Perlakuan Plastik dengan Jumlah Akar
Grafik 4.4 Perlakuan Plastik dengan Panjang Akar (cm)


Berdasarkan hasil yang di dapat dari gambar grafik 4. 1 terlihat adanya perbedaan antara perlakuan menggunakn media kompos, pupuk kandang dan tanah biasa. Pada perlakuan yang mengunakan tanah memilki jumlah akar paling banyak, sedangkan pada media kompos memiliki jumlah akar yang paling sedikit dan media kandang sendiri memiliki jumlah yang mendominasi di antra keduanya. Sementara  pada perbandingan panjang akar jumlah yang terpanjang pada penggunaaan media pupuk kandang, hal tersebut di mungkinkan karena pada pupuk kandang memilki bahan organik yang lebih banyak dan adanya kandungan unsur tertentu yang mempercepat pertumbuhan akar cangkokan, seperti yang tergambar pada grafik 4. 2.
Pada gambar grafik 4. 3 perlakuan pembungkus dengan menggunakan plastik diperoleh data perbandingan antara media yang menggunakan kompos, pupuk kandang dan tanah yang memilki jumlah akar paling banyak adalah pada media yang menggunakan pupuk kandang. Sedangkan pada data dalam perbandingan panjang akar media pupuk kandang juga memilkirata-rata  akar terpanjang daripada media yang lain. Salah satu faktor yang mempengaruhi rendahnya rata-rata pada perlakuan dari media kompos disebabkan kurangnya data karena kesalahan dari praktikan, kurangnya pemeliharaan terhadap cangkokan.
Berdasarkan dari keseluruhan data yang diperoleh pada grafik antara pembungkus serabut kelapa dan plastik menunjukkan bahwa pembungkus seabut memilki pengaruh lebih baik daripada plastik dalam pertumbuhan dan hasil cangkokan.
Pada percobaan pencangkokan yang dilakukan dengan menggunakan tanaman sri rejeki pembentukan akarnya dapat dipermudah dengan perlakuan seperti pelukaan, pengikatan, etiolasi, dan penyelarahan dari batang (disorientation), yang mempengaruhi gerakan dan penumpukan auksin serta karbohidrat pada bagian batang tersebut. Pada prcobaan tersebut diberi perlakuan Rooton F dengan maksud agar bahan cangkokan cepat berakar juga mempercepat dan memperbanyak keluarnya akar. Hal tersebut dapat di buktikan misalnya dalam praktikum yang telah dilakukan disitu terlihat adanya perbedaan antara cangkokan denhan menggunakan Rooton F dengan yang tidak. Pada cangkokan yang mengunakan Rooton f memilki jumlkah akar lebih banyak daripada yang tidak menggunakan Rooton F. Dari situ jelas sekali peranan Rooton F terhadap pertumbuhan akar cangkokan. Seperti yang dikatakan bahwa “Pemberian Rootone-F menyebabkan akar lebih cepat keluar dan jumlahnya lebih banyak, kondisi yang sama juga dapat dilihat pada media tanah + kompos dengan Rootone-F. Kondisi sebaliknya terjadi pada kedua media tanpa Rootone-F akar akan lebih lambat keluar dan jumlahnya sedikit. Hal ini dapat dijelaskan bahwa Rootone-F merupakan salah satu zat pengatur tumbuh untuk induksi perakaran. (Abidin, 1990) .
Didalam perlakuan pencangkokan tanaman menggunakan pembungkus atau pembalut yang digunakan sebagai media perakaran. Bahan pembungkus atau pembalut yang digunakan dalam praktikum yaitu serabut kelapa dan plastik. Perlakuan tersebut dilakukan bertujuan untuk menahan media yang digunakan dalam cangkokan, memepertahankan kelembapan akar dan agar mendapatkan hasil dengan baik dengan waktu yang relatif lebih cepat juga untuk menghindari terkena cahaya langsung, sebab akar akan lebih cepat tumbuh dengan sehat dalam keadaan gelap dan lembab. Untuk cangkokan umumnya menggunakan bahan dari sabut kelapa atau karung goni untuk membungkus tanah sebagai media perakaran. Supaya cangkokan dapat berhasil dengan baik dengan waktu yang relatif cepat dan ekonomis, selain itu untuk bahan pembungkus media dapat pula dengan menggunakan plastik (Adnan, 2008). Sedangkan dari media untuk mencangkok bisa menggunakan cocopeat atau serbuksabut kelapa ataupun cacahan sabut kelapa. Dapat pula dugunakan campuran kompos/pupuk kandang dengan tanah (Yusuf, 2009). Dan untuk merangsang pertumbuhan akar harus memilki porus sehingga mudah ditembus akar-akar muda, ringan agar tidak membebani batang yang dicangkok, mampu menahan air sehingga media cukup lembap.
Dalam melakukan pencangkokan membutuhkan persyaratan agar mendapatkan hasil yang baik dan maksimal, baik dari segi fisik maupun lingkungan sekitarnya. Beberapa persyaratan antaralain; tiadak dapat dibiakkan dengan cara layarage lain, kemudian dari segi pemilihan batang yaitu memiliki batang/cabang yang berdiameter besar dan tinggi dengan pemilihan pohon induk dari tanaman induk yang sehat dan kuat dipilih dari varietas yang telah dikenal sifat buah yang diinginkan. Pohon induk dipilih dari pohon yang bentuk cabangnya lurus, panjang cabang kira-kira sebesar jari telunjuk orang dewasa dan sebaiknya dipilih cabang atu dahan yang telah berumur satu tahun. Selain dengan persyaratan tersebut perlu diperhatikan beberapa hal antaralain; pelaksanaan mencangkok sebaiknya dilakukan pada waktu musim penghujan agar meringankan pemeliharaan terutama dalam hal penyiraman. Pemilihan batang cangkok, sebaiknya batang cangkoan jangan diambil dari pohon induk yang terlalu tua karena biasanya dahan pohon induk kurang baik untuk dicangkok juga jangan mengambil dari pohon yang terlalu muda karena sifatnya kebanyakan belum terlihat. Kemudian dari segi pemeliharaan, jika pencangkokan dilakukan pada musim kemarau sebaiknya bibit disiram dua kali sehari. Pada musim penghujan penyiraman dilakukan seperlunya sesuai dengan situasi untuk mempercepat pertumbuhan akar.
Dalam melakukan pencangkokan haruslah mengerti bagaimana cara pencangkokan yang benar juga harus diperhatikan cara pengikatan yang benar agar hasilnya sesuai keinginan dan maksimal. Langkah awal yaitu dengan mengikat lembar plastik atau sabut kelapa dibagian bawah keratan dengan tali rafia. Lembaran plastik atau sabut kelapa dilipat keatas hingga membentuk kantong, kantong yang terbantuk diisi dengan tanah yang dicampur dengan kompos atau pupuk kandang dengan posisi menutup luka sayatan seluruhnya dan setelah kantong berisi tanah diikat beberapa sentimeter diatas keratan, pengikatan jangan terlalu erat atau terlalu renggang.



BAB 5. KESIMPULAN DAN SARAN
5. 1 Kesimpulan
            Dari kegiatan praktikum yang dilakukan dapat ditarik beberapa kesimpulan antaralain :
1.  Perlakuan dengan pemberian Rooton F sangat berpengaruh terhadap daya pertumbuhan akar cangkokan. Cangkokan dengan diberi Rooton F memilki jumlah akar yang lebih banyak daripada tanpa pemberian rooton f.
2.  Sebaiknya diperhatikan dalam pemilihan batang yang akan digunakan dalam pencangkokan.
3.  Adanya pebedaan hasil antara perlakuan dengan menggunakan serabut dan plastik,   ternyata lebih banyak pada perlakuan dengan menggunakan serabut kelapa. Dengan demikian berarti pembungkus berpengaruh terhadap pertumbuhan akar cangkokan.

5. 2 Saran
            Sebaiknya selalu diperhatikan kekompakan setiap anggota kelompok dan ketelitian dalam percobaan agar mendapatkan hasil yang maksimal.

DAFTAR PUSTAKA
Kusbiantoro, B. 1993. Tekhnik Prbanyakan Vegetatif, Mencangkok. Agro Jurnal(2): 9
Sutarto, ismiyati. 1994. Tekhnik Perbanyakan Vegatatif pada Tanaman Hias Semak,           Perdu dan Pohon. Info Holtikultura : 6-7
Wahid. 2000. Media Bahan Perkembangan Vegetatif. Agro Jurnal : 4-5
Wahyuni, Sri. 1998. Pengembangan Vegetatif Mencangkok. Agro Jurnal : 59
Wilkins. 1991. Fisiologi Lingkungan Tanaman. Yogyakarta : Gajah Mada Press.

      Telah ditemukan spesies baru pada dunia perikanan yaitu "rezauis kudanilitis". spesies ini ditemukan di pantai watu ulo, tepatnya jember, jawa timur. kami menemukan spesies tersebut pada saat kami asyik mandi di laut, tiba- tiba terdengar suara gemuruh, kemudian kami menghampirinya. kami pertama-tama kaget sekali waktu melihatnya kemudian melihat wajahnya yang kelaparan kami kasian. akhirnya kami membawa spesies tersebut ke penangkaran hewan terdekat untuk diteliti lebih lanjut. 

Rabu, 07 Maret 2012

foto unik

tidur dalam bus

foto unik-tidur

tidur dalam bus

foto unik-tidur






tidur dalam bus "Mila Sejahtera"

foto unik- hama pencucuk penghisap

enaknya tidur di bus

foto unik-pura^^ mati


foto unik-pegangan dengan kaki


Cagur. Uyee: foto unik-mahasiswa

Cagur. Uyee: foto unik-mahasiswa: asyiknya kalau tidur gak ngajak-ngajak.....

foto unik

koleksi foto sewaktu ''field trip ke Kebun Raya Purwodadi''



koleksi Tanaman kebun raya Purwodadi


 foto ini diambil di ''Kebun Raya Purwodadi''

foto unik-mahasiswa


asyiknya kalau tidur gak ngajak-ngajak.....

JALANAN INDONESIA

       


tapi tetep SEMANGAT!!!

Cagur. Uyee: foto unik

Cagur. Uyee: foto unik: foto ini adalah foto teman saya waktu ulan tahun yang ke 19, tepatnya bulan oktober.aku dan temen- teman memang merencakan untuk menghajarn...

foto unik

foto ini adalah foto teman saya waktu ulan tahun yang ke 19, tepatnya bulan oktober.aku dan temen- teman memang merencakan untuk menghajarnya pada waktu ulang tahunnya, karena pada waktu sebelum ulang tahunnya dia meamang sering menjadi dalang untuk mengerjai orang-orang yang sedang ulang tahun. 
aku kurang puas sebenarnya waktu itu, karena aku hanya menghajarnya sedikit, tetapi cukup puas lah kalau melihat wajahnya yang hampir nagis gitu,,,
hahahaha
semangat kawan